Subduction zone guided waves and the heterogeneity structure of the subducted plate: Intensity anomalies in northern Japan
نویسندگان
چکیده
[1] The subducting Pacific plate acts an efficient waveguide for high-frequency signals and often produces anomalously large intensity on the eastern seaboard of northern Japan during deep earthquakes. The waveform records in the region of high intensity show a low-frequency (f < 0.25 Hz) onset for both P and S waves, followed by large, highfrequency (f > 2 Hz) later arrivals with a long coda. This behavior is not explained by a simple subduction zone model comprising a high-velocity plate with low attenuation. From the analysis of observed broadband waveforms and numerical simulation of seismic wave propagation in the Pacific subduction zone we demonstrate that the high-frequency guided waves traveling in the subducting plate arise from the scattering of seismic waves by heterogeneity in plate structure. Our preferred model of the heterogeneity has elongated scatterers parallel to the plate margin described by a von Karmann function with a downdip correlation length of about 10 km and much shorter correlation length of about 0.5 km in thickness. The standard deviation of wave speed fluctuations from the averaged background model is about 2%. This new heterogeneous plate model generates significant scattering of seismic waves with wavelengths shorter than correlation distance in thickness, but low-frequency waves, with long wavelengths, can easy tunnel through such lamina structure. The result is frequency-selective propagation characteristics with a faster low-frequency phase followed by large and high-frequency signals with very long coda. A low-wave speed channel effect from the former oceanic crust at the top of the subducting slab is not necessary to explain the observed dispersed signals and the very long high-frequency coda. Three-dimensional simulations, using the Earth simulator supercomputer for modeling of high-frequency seismic wave propagation in the Pacific subduction zone including plate heterogeneity, clearly demonstrate the scattering waveguide effects for high-frequency seismic waves traveling in the plate. The region of large intensity for the heterogeneous model migrates away from the hypocenter into northern Japan with an elongated zone along the Pacific coast, almost comparable to the observations from deep events in the Pacific plate.
منابع مشابه
High-frequency waves guided by the subducted plates underneath Taiwan and their association with seismic intensity anomalies
[1] Energy from seismic events traveling up a subduction zone is frequently associated with significant large-amplitude, high-frequency signals with sustained long coda. Such seismic waves guided by the subducted plate with high wave velocity and high Q can cause surprisingly large seismic intensity in the fore-arc area. In this study, we characterize the guiding behavior of the subducted Phili...
متن کاملSeismic structure in central Mexico: Implications for fragmentation of the subducted Cocos plate
[1] The fine-scale seismic structure of the central Mexico subduction zone is studied using moderate-sized (M4-6) intraslab earthquakes. Regional waveforms from the Mapping the Rivera Subduction Zone (MARS) seismic array are complicated and contain detailed information about the subduction zone structure, including evidence of lateral heterogeneity. This waveform information is used to model th...
متن کاملHypothesis for Cretaceous rifting of east Gondwana caused by subducted slab capture
In the process of subducted slab capture, a spreading ridge approaches subparallel to a subduction zone following the trailing edge of a downgoing plate. Eventually the downgoing plate is too young and small to subduct, and spreading stops. The spreading ridge stalls many tens of kilometres outboard of the subduction zone. The subducted plate welds to the outboard plate across the dormant sprea...
متن کاملScattered waves from low-frequency earthquakes and plate boundary structure in northern Cascadia
[1] We use 3-D waveform modeling of LFEs (lowfrequency earthquakes) to investigate their relation to plate boundary structure along a linear transect in northern Cascadia. To account for crustal velocity heterogeneity, a smoothed 3-D model of subduction zone structure is assembled that incorporates constraints from regional tomographic and plate boundary models. Scattered phases within LFE wave...
متن کاملDeep structure of Japan subduction zone as derived from local, regional, and teleseismic events
We have determined a detailed three-dimensional P wave velocity structure of the Japan subduction zone to 500-km depth by inverting local, regional, and teleseismic data simultaneously. We used 45,318 P wave arrivals from 1241 shallow and deep earthquakes which occurred in and around the Japan Islands. The arrival times are recorded by the Japan University Seismic Network which covers the entir...
متن کامل